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BACKGROUND

In the financial world, option trading makes up a large part of the opportunities to make
money. Determining the future market value of these securities and options in an efficient
manner is important to all the entities involved buying, selling, and holding these options and
securities. Traders, trustees, investment bankers, fund managers, broker-dealers, investors all
need tools to determine the implied value the options and securities they are trading or
holding.

There are many approaches to modeling the financial behavior of securities. Most have
shortcomings for a variety of reasons. Earlier option pricing models such as the 1973 Black
Scholes approach with brownian motion and diffusion process as described by the second law
of thermodynamics are sufficient for near-the-money or at-the-money trades but not for out-
the money trades.

The understanding that financial systems interactions can be modeled in the same
manner as physical systems leads to the use of the laws of physics, mathematics and statistics,
to create financial models that use the similarities to physical interactions in our universe.

Some of the ways this modeling invention addresses the shortcomings of earlier models
is by:

Unifying many of the classical modeling methods

Brownian motion extended to quantum propagation

Classical Heat diffusion extended to quantum wave diffusion

The introduction of asymmetric quantum diffusion to account for investor psychology of
asymmetric biases for positive and negative outcome

It uses concepts from the unified field theory of physics and mathematics including:
Weak and Strong Interactions (Short Range)

Electromagnetic Field (Long Range)

Gravitational Field (Long Range)

Differentiable Manifold Deconvolution



Space Time Energy Momentum Tensors

Dark Matter Dark Energy

The Quantum Electro Dynamic ( QED) field effect option model describes the quantum
behavior of volatility evolution, unlike what has ever been done in the market before. This gives
it the ability to accurately predict when short-term volatility inefficiencies occur in the market,
and thereby profit from the high-probability mean reversion strategy on volatility-based trades.

Unlike the classic Black Scholes model the QED Model provides five pieces of
information:

Positive implied volatility (good)

Negative implied volatility (bad)

Upward movement speed

Downward movement speed

Deviation of risk neutral condition (ugly)

BRIEF SUMMARY OF THE INVENTION

This option model is based on quantum electrodynamics (QED) field effect. The classical
random walks are extended to quantum walks. The quantized option price states are modeled
along one-dimensional tight-binding quantum chain. The wave function of such a quantum
chain is described by the Schrodinger equation and the probability density function is governed
by the generalized master equation of quantum diffusion. Numerical solutions can be obtained
via Monte-Carlo simulations. The resulting density distribution has well defined front shape.
One key feature of the model is the introduction of asymmetric quantum diffusion along
positive and negative states to account for investor asymmetric risk preference. Our QED-
based model unifies many classical option models (BS, VG, DE) as special cases but most
importantly extends to other endless possibilities from quantum ballistic limit to quantum
super-diffusive regime.

DETAILED DESCRIPTION AND BEST MODE OF IMPLEMENTATION

The model is implemented as a set of computer programs running on a massively parallel,
memory based, ubiquitous computing system that use a large heterogeneous data base of
securities data going back several decades along with real time trading data. The model can also
be used for other types of financial or other modeling using the appropriate data and factors.



Options Formula
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— put price at time t for stock S, strike K, maturity T
V.(t|S,K,T) — call option price at time t
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Confidence Formula

B, — probability of exercising a put option
P. — probability of exercising a call option

Pp = H(X*) - pOPVF(v! y) (3)
P.=1-F (4)

Confidence of Success (for Short Put Strategy)

Confidence — likelihood of not exercising the put

Confidence =1— P,



Model Calibration Formula
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Ngr — number of data points for all option series in (K, T)
Ny — number of data points for a given option series in K
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t — future time in years (0 <t <T)
S — stock price at t
K — strike price of an option
T — maturity in years
r — risk free annual interest rate

q — annual divident yield
R — risk neutral normalization
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Volatility Evolution
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Implied Volatility
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Option Greeks

Delta Vega Theta Rho Gamma
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Model Parameters
(04,V4,a4,€4,8) — model parameters

— model parameters for up (+) or down (-) volatility

Ot
vy — model parameters for up (+) or down (-) dif fusion
a4+ — model parameters for long-range time evolution
€+ — model parameters for short-range time evolution

6 — model parameter for center corrections



v4 — related to dif fusion exponent and potential energy

vi=0
vi=1/2
Vi>1/2

balistic limit (box distribution)
classical case (normal distribution)
superdif fusive (wedge distribution)

(04,v4) introduces asymmetric risk perference

TNA (o_ > o0y) left skewed distribution

TZA (o, > 0_) right skewed distribution
Limiting Cases
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Ve = (Sa — Kq)0(Sq — Ka) c—0

Pp—>9(Kd—Sd) -0

PC_>9(Sd_Kd) -0

Set initial values of the model parameters (o4,Vy, a4, €4,6)

Black-Scholes
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where the subscript j refers to maturity T; and (x); denotes the
average of x over strikes for a given maturity T;

Accuracy — Standard Error
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Notes on Calibration Method |

Set &; for each maturity T;
Set Vopp = 0.015 if Vygp < 0.015 to avoid data flooring issue

Approximate boundaries on model parameters

O<O'iS3
O<v, <1
O0<v_<3
~1Say S+1
—3S e S43
~0.03 S §; S +0.03

Setay = 0and e, = 0 if there is only one maturity
Set e, = 0 if there is only two maturities

Notes on Calibration Method Il

Set 6; for each maturity T;
Set ay = €, = 0 and set 0. for each maturity T;
Set Vogp = 0.015 if Vygp < 0.015 to avoid data flooring issue

Approximate boundaries on model parameters

O<O'ijS3

O<vy, <1

O<v_<3
—0.03s5js+0.03



Greeks Formula (I)
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Greeks Formula (Il)
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Greeks Formula (ll)
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Derivatives Formula
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CLAIMS

A model for forecasting option price movement for option trading.

A model that generates: Positive implied volatility, Negative implied volatility, Upward
movement speed, Downward movement speed, Deviation of risk neutral condition.

A Pricing model that is continuously calibrated using real-time market data using:
Monte-Carlo Simulation Based: Monte-Carlo simulations of 100,000 paths in tick by tick time
steps are performed in our massive parallel computing environment to generate option prices
on the fly.

Option trading volume and bid-ask spread data are taken into account in the calibration
process.

Using the entire spectrum of ATM to far OTM strikes within the calibration process to account
for the entire Full Volatility Skew exhibited in the market prices and bid-ask data, and thereby
allow accurate modeling of stochastic volatility.

Advanced nonlinear techniques and maximume-likelihood optimization are used to estimate
model parameters to ensure Global Minimum Solution.

ABSTRACT

Unlike earlier option trading models, the Quantum Electrodynamic (QED) Field Effect Option
Model provides five pieces of information:

Positive implied volatility (good)

Negative implied volatility (bad)

Upward movement speed

Downward movement speed

Deviation of risk neutral condition (ugly)

The Quantum ElectroDynamic ( QED) field effect option model describes the quantum behavior
of volatility evolution, unlike what has ever been done in the market before. This gives it the
ability to accurately predict when short-term volatility inefficiencies occur in the market, and
thereby profit from the high-probability mean reversion strategy on volatility-based trades.



