

Provisional Application for United States Patent

TITLE: UBiquitous indeX matrix computing architecture (UBXÔ)
INVENTOR(S): John Wang, Weimin Zhao, Lawrence Thoman
USPTO Patent Application Number: 24300156-62264695-2690

BACKGROUND

The BIG data customer frequently requires making, analyzing, creating or running:
Predictive non-linear, non-parametric models.
Path-dependent Monte Carlo simulations.
Very complex iterative global optimization.
Quantum covariance matrix calculations.
Query n-dimension stratification or slicing and dicing by variables and filters.
Real-time conditional probability decision with highly skewed fat-tails.
Probabilistic economic value-added outcomes in time series.
Adaptive feedback loop for any incremental or derivative alpha knowledge.
	
Typical data analysis involves ad hoc query, summation, sorting, and linear table scan.
The organization of data and metadata greatly affects the performance and ease of use.
When performing ad hoc queries, many existing analytical tools use a combination of
indexing of some frequently used fields and linear table scan on non-indexed fields. One
of the reasons that only selected fields are indexed is the large size of index metadata
itself. It is also time consuming to create indices.
Another commonly faced problem using conventional tools is the flexibility when
creating new fields. When new fields need to be added, it usually requires the whole data
(table) be recreated. Therefore, conventional tools provide acceptable and sometimes
satisfactory data analysis solutions when the data involved remains relatively small. On
the hand, when large amount of data is involved, a better approach is needed.

BRIEF SUMMARY OF THE INVENTION

The UBXÔ (UBiquitous indeX matrix computing) is designed to deliver speed-of-light
analytic performance, when it is needed most. In UBXÔ approach to solving this
problem, the entire source data sets, from multiple systems of every record and every
field, are indexed in parallel across multiple compute nodes. A compute node is a
separate CPU, each with its own dedicated support subsystems. The indices are locally
cached and the analytical operations involving those records are executed locally, in
parallel on each of the compute nodes. These operations are synchronized and
coordinated by a network of system governors (SysGovernor) that also manages the
staging of data and the storage of intermediate and final results.
Our invention uses a novel approach to organize the data and metadata to address the
shortcomings of the conventional approach.

We store the data and metadata separately. The data is stored in the most natural form:
flat file format. All records and fields have fixed width. All fields are indexed and indices
are stored individually. The index data contains the sorting order of corresponding fields.
This patent is about a mechanism of performing data and mathematical computation in a
parallel fashion. It is a parallel adding machine at heart with additional control
mechanisms.
There are many examples of data- or computation-intensive applications in scientific,
engineering, financial, and other various industrial fields. A good majority of these
applications can be decomposed into the simple task of adding up numbers, such as errors
of estimated vs. actual at all mesh points in a simulation, balances from all accounts etc.
By the very nature of summation, these computations can often be computed in parallel.
These “totals” are then either utilized to adjust the dependent variables for the next
iteration in a simulation, or combined with other totals to form a final report, using a
certain control mechanism. When large amount of data and computations are involved,
parallelism provides a large performance gain over the conventional sequential approach.
The UBX™ is one such mechanism to perform the above computations in parallel across
multiple computers, i.e., computational nodes. Essential to the claim in this patent
application is the way UBX™ synchronizes among all nodes, combines the intermediate
results, and handles user tasks in a concurrent fashion.
The number of compute nodes is initially set to meet the database size and simultaneous
user requirements necessary to achieve the business users’ overall performance goals.
The number of compute nodes can be increased at any time to accommodate changes in
either performance requirements or number of source systems of record to be catalogued.

The architecture can also be scaled by adding additional levels of SysGovernor

This ability to scale the performance of the system in a cluster parallel manner at the node
level allows UBXÔ to maintain a far more linear increase in overall throughput than
would otherwise be possible by more traditional means. UBXÔ has the ability to sort,
index, search, manage, stream, buffer and deliver heterogeneous databases in the 1,000
petabyte (1018 bytes) range to customers when and where they want them. This is the key
challenge for storewidth (storage and bandwidth) and UBXÔ delivers it with currently
available off-the-shelf Intel based CPU chipware.

The UBX™ is based on original intellectual property including patent 5278987 Virtual
Pocket Sorting

UBX™ is an open standard, open source, scalable, distributed, parallel Linux platform.
The “open standard protocol system” design means that industry standard hardware can
be enhanced with pluggable, embedded proprietary technology for even greater system
performance and reconfigurable capabilities. It is a unique combination of software and
hardware that easily expands with the growth of the business and its big data. A few of
UBX™ characteristic features are as follows:

Unifies Information Across Heterogeneous Databases
UBX™ provides a single view of data from multiple data sources.
These sources include legacy systems, Oracle, and DB2.

Large Datasets Are Processed in Reduced Time

As the size of the big data grows, UBX™ maintains linear scalability. For conventional
database systems, the throughput decreases as the size of the database grows. The
throughput of the systems is further enhanced since only useable data is stored.

High Speed Computational Engine
UBX™ is able to process queries ten times faster than a conventional database. This is
the result of UBX™’s unique indexing algorithm that indexes all fields and requires only
one scan of the dataset to process complex computations and sorts. Most conventional
databases are hierarchal and require sequential scans of the database slowing down the
processing and delivery of the results to the client.

High Data Integrity
UBX™ extracts, transforms, and loads (ETL) data from external databases. UBLoad is
able to verify the format of data loaded from external sources. It recognizes format
changes and updates instantly. This allows the user to verify and correct the format
before the data is processed. Therefore the client consistently receives accurate reporting
and analysis.

Web-based GUI Providing Fast Access to Analytic Knowledge
UBX™ interface allows the client to request pre-defined or ad-hoc analysis and
reporting. The results can be presented in a standard report format and/or through charts
and graphs. The thin layer architecture between the client, UBX interface and the
processing engine streamlines processing time and overhead. Results are presented to the
client in a minimal amount of time, generally minutes and seconds.

UBSystem ™

Existing
ComputeNode 1

Index 1

Local Cache
Data Set 1

ComputeNode 2
Index 2

Local Cache
Data Set 2

Compute Node n
Index n

Local Cache
Data Set 1n

Network Attached
Storage

Internet, Intranet, Extranet, IP Packet Network,
Optical Network

N

SysGovernor

Client Browser

1

N

1 Web Engine

OLTP Database FTP Server

UBX ™

Existing
ComputeNode 1

Index 1

Local Cache
Data Set 1

ComputeNode 2
Index 2

Local Cache
Data Set 2

Compute Node n
Index n

Local Cache
Data Set 1n

Network Attached
Storage

Internet, Intranet, Extranet, IP Packet Network,
Optical Network

N

SysGovernor

Client Browser

1

N

1 Web Engine

OLTP Database FTP Server

Figure 1 UBX™ System

DETAILED DESCRIPTION AND BEST MODE OF IMPLEMENTATION

The system consists of the UBX™ Hardware platform and the UBX™ System
Software

UBX™ Hardware

The hardware components of UBX™ provide a high-speed computing farm in a scalable,
parallel cluster architecture that can easily grow to meet the most demanding business
requirements. Parallel cluster computing is performed at the node level. Network
attached storage expansion is achieved through high speed connections. Data and
indexes are mirrored on the local ‘cache’ for performance and reliability.

 We have several system classes to meet our customer’s evolving needs. Each system
class includes a suite of applications appropriate to the customers operations. The UBX™
system hardware is built from industry standard components to achieve the best price
performance ratio. The new system class products are:

Desktop Server Class: This system class is designed for an advanced or “power user”
with domain expertise.

Department Server Class: This system class designed for a line of business applications
with multiple users.

Enterprise Server Class: This system class is designed for use by the Enterprise server-
computing farm:

Custom-Built Class: For those customers who need a special configuration with more
storage, more processors or different operating systems, we continue to offer our
customized hardware configurations and applications.
Embedded System, A Reconfigurable computing platform

UBX™ System Software

 UBX™ - A Parallel Analytical Engine

A mechanism of performing data and mathematical computation in a parallel fashion. It
is a parallel adding machine at heart with additional control mechanisms.

There are many examples of data- or computation-intensive applications in scientific,
engineering, financial, and other various industrial fields. A good majority of these
applications can be decomposed into the simple task of adding up numbers, such as errors
of estimated vs. actual at all mesh points in a simulation, balances from all accounts etc.
By the very nature of summation, these computations can often be computed in parallel.
These “totals” are then either utilized to adjust the dependent variables for the next
iteration in a simulation, or combined with other totals to form a final report, using a
certain control mechanism. When large amount of data and computations are involved,
parallelism provides a large performance gain over the conventional sequential approach.

The UBX™ is one such mechanism to perform the above computations in parallel across
multiple computers, i.e., computational nodes. Essential to the claim in this patent
application is the way UBX™ synchronizes among all nodes, combines the intermediate
results, and handles user tasks in a concurrent fashion.

 Figure 2. UBX™: user requests execute simultaneously on multiple nodes.

A logical view of UBX™ is shown in Figure 2. In the diagram, four computational nodes
run separately on different computers. The data are distributed on each node. The
preprocessor formulates and sends computational tasks to all nodes. After each node
fulfill its tasks, the intermediate results are synchronized and added before sending to

Preprocessor

Node1

Postprocessor

Done?

Node2 Node3 Node4

N

Synchronize
& Add

Data &
Logic

Data &
Logic

Data &
Logic

Data &
Logic

Farm out
Requests

User
Requests

postprocessor. The postprocessor further manipulates the results and make a decision
about the next step.

The following is a physical view of UBX™. Figure 3 shows that the central node,
SysGovernor, connects to the computational nodes via network. It provides a user
interface for user input and also controls all the computational nodes. It uses a farm of
managed threads to manage the communication to and from the nodes. The UBShell that
runs on each node handles all communication and data processing task.

Figure 3. Physical View of UBX™: SysGovernor and nodes are networked together.

From a user’s perspective, a typical script is listed in Figure 4. In UBX™, parallelism in
data analysis and computation is expressed both implicitly and explicitly.
The parallel() explicitly defines portion of the tasks that are executed in parallel on the
nodes.
Numbers inside parallel(), such as B and map mFreq[], are implicitly added by
SysGovernor
Associative memory, such as mFreq[], is explicitly sent to SysGovernor from the node
but implicitly combined by the key value, state, in our example.

At the end of execution of the sample script
A = 1, because it is processed only by SysGovernor
B = 4, because it is automatically added by SysGovernor when received from each of the
4 nodes

Node1

SysGo vernor

Node2 Node3 Node4

Preprocessor
Postprocessor

End User

UBShel
l

UBShel
l

UBShel
l

UBShel
l

The table, mytbl, is distributed among all nodes, i.e., each node has
its own portion of the data. The associative memory that is created on
the table, will thus carry information available for that node only.
The associative memory, mFreq[], is tallied by SysGovernor for each state.
In the term(g) block, where “g” indicates SysGovernor, the results of tallied mFreq[]
are printed.

 1: A = 1;
 2: parallel(){
 3: B = 1;
 4: data(){
 5: init(){
 6: x@ = load(“mytbl”);
 7: map mFreq(x@, state, curbal);
 8: }
 9: term(){ send mFreq[]; }
10: term(g) {
11: for_each(state in mFreq[])
12: print –obj R@ key, mFreq[state];
13: }
14: }
15: }
 Figure 4. Sample KScript code for UBX™

The implicit parallel mechanism forces user into a mindset of parallel computing
framework, whereas the explicit mechanism gives user precise control of how the data
are to be computed and combined. The combination of these two controls provides user a
unique and powerful way to naturally formulate their problems at hand into parallel
computing paradigm on the UBX™ architecture.

In conclusion, UBX™ provides a powerful parallel computing mechanism for data- or
computation-centric applications. It does so by implicitly adding values coming from
each node while provides explicit control over certain dataflow. For data-centric tasks,
the data were first distributed on all nodes. For computation-intensive tasks, logics are
divided among the nodes.

 UBFile - A Data Analysis Engine

A novel way of organizing data and metadata for use in the field of data analytics.

Typical data analysis involves ad hoc query, summation, sorting, and linear table scan.
The organization of data and metadata greatly affects the performance and ease of use.

When performing ad hoc queries, many existing analytical tools use a combination of
indexing of some frequently used fields and linear table scan on non-indexed fields. One
of the reasons that only selected fields are indexed is the large size of index metadata
itself. It is also time consuming to create indices.

Another commonly faced problem using conventional tools is the flexibility when
creating new fields. When new fields need to be added, it usually requires the whole data
(table) be recreated. Therefore, conventional tools provide acceptable and sometimes
satisfactory data analysis solutions when the data involved remains relatively small. On
the hand, when large amount of data is involved, a better approach is needed.

Our invention uses a novel approach to organize the data and metadata to address the
shortcomings of the conventional approach.

We store the data and metadata separately. The data is stored in the most natural form:
flat file format. All records and fields have fixed width. All fields are indexed and indices
are stored individually. The index data contains the sorting order of corresponding fields.

 Figure 5. The basic UBFile structure: fixed format data with all fields indexed
and stored individually.

The immediate benefits of the above data organization and novel ways to use such data
structure are
Ad hoc queries with any combination of fields can be performed without linear table scan

Idx1 Idx2 Idx3 Idx4

Fld1 Fld2 Fld3 Fld4

Since we only store the sorting order of the corresponding fields, it does not incur much
storage usage. Based on some 1300 different record layouts we have used, covering
roughly 3 TB of data and metadata, the metadata occupies about 50% of the total size.
When complex queries are executed, only indices of needed fields are loaded, reducing
demand for memory storage
Since we store the data in fixed format, without any additional space reserved in the data
file, it is efficient in both storage and retrieval process.
Working together with our indexing mechanism, query results result can be retrieved
directly from the data without indirect reference or linear data scan
Once a record is retrieved, individual fields can also be accessed directly without further
parsing.
When new fields need to be added, two or more UBFiles can be logically pasted together
to form a new UBFile. The component UBFile is self-contained and can be used
individually.

Figure 6. Pasting two UBFiles together logically to form a new UBFile

Multiple UBFiles can also be logically concatenated to for a new UBFile, see Figure 7 in
the next page. With the logical concatenation, new data can be added to a logical UBFile
without touching the previously existed data.

In short, UBFile is a novel data and metadata organization mechanism that provides
space and time efficiency for data management and analysis. It is especially
advantageous for operating on large datasets.

Idx1 Idx2 Idx3 Idx4

Fld1 Fld2 Fld3 Fld4

Idx1 Idx2 Idx3

Fld1 Fld2 Fld3

 Figure 7. Concatenating two UBFiles together to form a new UBFile.

Idx1 Idx2 Idx3 Idx4

Fld1 Fld2 Fld3 Fld4

Idx2 Idx1 Idx3 Idx4 Idx5

Fld1 Fld3 Fld2 Fld4 Fld5

 ASUM - A Multi-Variable Aggregation Technique

A novel way to manage single-pass aggregation on multiple by-variables in any
combinations.

Many data analysis and reports are based on aggregation of independent variables within
a data file or table. There are many tools that offer ways to perform such aggregations on
multiple by-variables. But there has been no solution that provides single-pass and at the
same time allowing varying ways of nesting, combining, and concatenating the by-
variables. The single-pass and almost limitless ways of combining many by-variables go
hand in hand to provide high performance and high capacity report generation over huge
amount of data.

With conventional approach, aggregation over each group of by-variables requires a
separate pass of data scan, which is not only time consuming, but also makes report
generation with many different reports over the same data a very tedious programming
task.

Our invention gives user a way to express very complicated aggregation schemes for data
analysis and report generation. It allows a user to nest and combine by-variables into
sequences and concatenate multiple sequences into a single request. It then translates the
request specification into a data structure that describes the relationships of different
aggregation sequences. Therefore a single pass of data scan can produce all the reports
defined by these sequences. No matter how many aggregations are needed, our approach
can always generate them within a single pass of data scan, resulting in substantial
timesavings when dealing with large data set.

We use the following data set, Table 1, to illustrate the capabilities of our invention for
report generation.

Table 1. Mortgage pool data showing the monthly upb (unpaid principal balance), loan age, and nlns
(number of loans within the pool). It also contains pool's static data, such as wac (weighted average of
coupon), issue date, pool type, and servicer ID.

poolno wac issdt type SID upb age nlns

140013 9.346 19830701 30 27 137,256 290 25

141865 8.329 19890401 30 2 132,684 309 13

A00340 11.152 19910501 01 27 28,086 240 8

A00786 10.094 19920901 01 2 79,554 205 57

A00895 10.425 19921201 01 22 6,502 203 28

A01211 8.659 19931101 01 10 17,957 311 22

A01320 9.526 19940401 01 11 2,676 228 7

A01656 10.944 19961001 01 41 12,292 213 3

A01772 9.812 19971201 01 22 14,954 201 16

B00056 10.198 19910701 01 12 117 176 18

B00438 10.111 19940801 03 6 47 178 3

B00557 9.226 19951201 03 7 954 163 11

The reports compute the following values: the total upb, the average loan age (wala)
weighted by upb, loan size (lnsz) which is upb divided by nlns, and number of
observations (count) with different combinations of by-variables.

The first report, Table 2, aggregates over pool type and SID. For SID, it groups together
SID 2, 6, and 10 as one entity, and the rest of possible SID’s as another.

Table 2. Report of pool data grouped by pool type and SID.

Type SID count upb wala lnsz

ALL ALL 12 433,708 271 2,053

ALL 2,6,10 4 230,242 262 1684.96

ALL OTHER 8 202,836 271 2052.5

01 ALL 8 162,137 223 14.2532

01 2,6,10 2 97,511 223 870.769

01 OTHER 6 64,626 223 1019.73

03 ALL 2 1,001 164 9.7696

03 2,6,10 1 47 178 16

03 OTHER 1 954 163 87

30 ALL 2 269,940 299 7103.69

30 2,6,10 1 132,684 309 10,206

30 OTHER 1 137,256 290 5,490

The second report, Table 3, aggregates over variables wac, issdt, and SID. WAC is a
numerical field and aggregation is done over uniform increment. IssDT is another
numerical field, but the aggregation is non-uniformly spaced. SID is a low cardinality
field and the aggregation is done over certain, yet different from Table 1, combinations of
possible values.

Table 3. Report of pool data grouped by wac, issdt, and SID

The two reports, Tables 1 and 2, demonstrates the nested aggregation of different by-
variables. It contains by-variables that are uniformly spaced (by wac) and non-uniformly
spaced (by issdt) variables. It handles user-defined groupings (by SID) as well. With our
invention, the above two reports can be generated with a single scan of the data,
especially import when dealing with large amount of data.

WAC IssDT SID count upb wala lnsz

ALL ALL ALL 12 433,708 271 2,053

ALL ALL 2,10,41 4 242,486 265 2,027

ALL ALL 6,22,27 5 186,846 271 2,161

ALL ALL 7,11,12 3 3,747 207 535

ALL <=1984 ALL 1 137,256 290 5,490

ALL <=1984 6,22,27 1 137,256 290 5,490

ALL 1985-1991 ALL 3 160,886 262 1,714

ALL 1985-1991 2,10,41 1 132,684 309 10,206

ALL 1985-1991 6,22,27 1 28,086 240 3,511

ALL 1985-1991 7,11,12 1 117 176 6

ALL 1992-1996 ALL 7 119,981 219 818

ALL 1992-1996 2,10,41 3 109,802 222 1,017

ALL 1992-1996 6,22,27 2 6,549 241 562

ALL 1992-1996 7,11,12 2 3,630 207 535

ALL >=1997 ALL 1 14,954 201 935

ALL >=1997 6,22,27 1 14,954 201 935

 8- 9 ALL ALL 1 132,684 309 10,206

 8- 9 ALL 2,10,41 1 132,684 309 10,206

 8- 9 1985-1991 ALL 1 132,684 309 10,206

 8- 9 1985-1991 2,10,41 1 132,684 309 10,206

 9-10 ALL ALL 3 156,167 271 2,053

 9-10 ALL 2,10,41 1 17,957 311 816

 9-10 ALL 6,22,27 1 137,256 290 5,490

 9-10 ALL 7,11,12 1 954 163 87

 9-10 <=1984 ALL 1 137,256 290 5,490

 9-10 <=1984 6,22,27 1 137,256 290 5,490

 9-10 1992-1996 ALL 2 18,911 245 612

 9-10 1992-1996 2,10,41 1 17,957 311 816

 9-10 1992-1996 7,11,12 1 954 163 87

10-11 ALL ALL 6 103,850 220 871

10-11 ALL 2,10,41 1 79,554 205 1,396

10-11 ALL 6,22,27 3 21,504 241 562

10-11 ALL 7,11,12 2 2,792 208 683

10-11 1985-1991 ALL 1 117 176 6

10-11 1985-1991 7,11,12 1 117 176 6

10-11 1992-1996 ALL 4 88,779 220 871

10-11 1992-1996 2,10,41 1 79,554 205 1,396

10-11 1992-1996 6,22,27 2 6,549 241 562

10-11 1992-1996 7,11,12 1 2,676 228 382

10-11 >=1997 ALL 1 14,954 201 935

10-11 >=1997 6,22,27 1 14,954 201 935

UBFile Extension: Table Join Indexing

This extension of UBFile addresses the much needed table join capability at table level.
Compared to the current join mechanism via TimeSeries configuration, the join relations are
created when the tables are updated through join indexing.

The join indexing mechanism is managed through a set of metadata files (tables).

1. The Join Index: Record Index of the Joined Table

The Join Index contains the record index (number) of the joined table as shown in Figure
8.

Figure 8. Join Index. The left table is joining right table using a Join Index.

I In addition, it contains the following:
· joined table name and join key field
· a checksum, cksum, of the joined key field in the joined table. The cksum
is used to ensure the join index is in sync with the joined table.

2. The Metadata: Defining the Join Relationship

The metadata is a file or table defines how a table or a series of tables are joined. Each joining
pair consists of the left (local, current, this, etc) and right (remote, historical, other, etc) tables:

1. left table name pattern: the table and key field name or pattern for a series of the left
tables
2. right table name pattern: the corresponding right table name and key field
3. lookup order: for fields existing in multiple joined tables, the values are are retrieved
from found in the first table following the lookup order. Default lookup order is local
table, rules order, and then left, and finally right.

3. The Read Operation

When a field value is read, e.g. via GetFldData(), it looks up the table according the lookup order,
and retrieve the field based on joining index.

4. The Indexing Operation

When a left table is updated, it looks up the table-relations metadata to determine how to created
the needed join index.

Left
Table

Join
Index

cksum

Right
Table

cksum

m:1 relation
relation

syn
c

When a right table is updated, it creates a cksum file on the join key field.

5. The Index Syncing Operation

When a right table is updated, all left tables' join indices will be synced, if the cksum on the right
join key is changed.

6. Use Cases

The Join Index can be used in the following scenarios

1. Agency PDB Breakout Tables. After pool level data, i.e., gen_pdb and ext tables, are
fully populated, the brk_pdb tables only needs to compute and store breakout-specific
data, e.g., cbal, nloans, SBals, current LTV (for state breakout), etc. All the other fields
are the same as pool level data, perfect candidates for Join Index. We create the Join
Index to join the brk_pdb to the gen_pdb. With the Join Index, we can access all the pool
level fields, e.g., WAC, WAM, WALA, FICO, SpecPool types, without actually
replicating the data in brk_pdb_ext tables.
2. Loan-level database: For loan-level data, each pdb and ext should only store month-
specific data, while keeping all the static fields in a single table or virtual vertical tables.
The virtual vertical tables consist of monthly originated loans, each table containing a
specific origination month. The monthly pdb points to the static pdb via a Join Index.

UBFile Distributed Query and Join: Handling Multiple Relations

Current UBSystem works on data that are distributed across all nodes based on a key
field. Various queries and computations are performed over each node's data, and the
SysGovernor aggregates intermediate results from the nodes to produce the final results.
For applications requiring datasets with multiple keys, data are distributed using different
keys. The relationship among these data needs to be handled across nodes' boundaries.
To work around this limitation, we merge other relations, e.g., external economic data,
static fields, etc., into the single table for analysis. The drawback is the wasted disk space
and limited ability for handling diversified data. We address this limitation by the
enhancement described here: the distributed query and join.

1. A Whole Virtual Table

The distributed query and join makes use of the centralized storage architecture, where
each node has access to all other nodes' data through a high-availability-storage (HAS)
complex over high speed network using NFS.

Figure 9. A whole table is a virtual table representing a union of node-
component tables visible on the nodes.

As a result of this accessibility, we can define a whole table as a virtual table consisting
of all the underlying node-component tables, as shown in Figure 9. A whole table
logically concatenates node-component tables as a single virtual table and this table can
be accessed from every node.

2. Distributed Query and Join

Once defined, a whole table can be queried and operated just like as a regular table on the
node and the query result can be used for subsequent processing independently on each
node.

node1 node2 node3 nodeN

whole virtual table

whole virtual table

Figure 10. Distributed queries are run on each node against the whole
table concurrently.

The distributed query result has the same data format as regular node-queries, where
reference to each node’s location is hidden behind the abstraction of the whole virtual
table.
A distributed join is a join that a node-component table joins with a whole table
distributed using the UB Table Join Index. It is functionally equivalent to the distributed
queries where we nest a node-query with a whole table query. As such we can use either
the distributed query or the distributed join based on the specifics of problems at hand.
In practice, distributed queries are more efficient and simple to use, which is
demonstrated through the use cases to follow, because the query result can be used
directly with tables for many types of data analysis.

3. Use Cases

For purpose of illustration, we use MBS CMO data to demonstrate how distributed query
and join are used in two test cases involving multiple relationships.
A CMO deal is composed several collateral groups, which is backed by many pools when
fully expanded. As shown in Figure 11, a deal-group has a many-to-many, M:N,
relationship with the collateral pools.

Figure 11. A CMO deal can be modeled as two relations: On the
Collateral side, each group maps to M pools and conversely each pool
maps to N groups, a M:N relation; and on the Security side, each group
maps to N classes.

On the security side, each deal group supplies cash flows to multiple tradable classes,
forming a one-to-many, 1:N, relationship.

node1 node2 node3 nodeN

distributed query

query query query query

pools groups classes
N:M 1:N

CMO
deal

Collateral Security

gen_pdb
brk_pdb
remic_pct

deal_pdb
group_pdb
class_pdb

The collateral pool tables, gen_pdb, brk_pdb, etc, are distributed by pool number field,
whereas the security data tables, deal_pdb, group_pdb, class_pdb, etc, are distributed by a
different key field, say, the deal-group ID. The collateral composition of a deal-group,
i.e., the group-pool M:N relation, is stored in a separate table, remic_pct.

3.1 Reverse CMO Look Up

For a given pool, say 36202FEH5 (G2SF 4636), the goal of this test case is to produce a
list of floater and inverse IO classes, e.g., floater class GNR 2010-26 FQ (38376VQR1),
and inverse IO class GNR 2010-26 QS (38376VQP5), backed by this pool.

The collateral pool G2SF 4636 is linked to the class GNR 2010-26 FQ and QS via
group(s) it backs. Because the group-pool and group-class relations are two separate
relations, a distributed query will be required.

The results can be obtained in two steps:

1. Run	a	node	query	on	the	remc_pct	table	to	get	the	groups	backed	by	the	pool	
2. Using	the	groups	from	step	1’s	query	result,	run	a	distributed	query	against	a	

whole	table	of	the	group-class	relation,	i.e.,	the	class_pdb.	

The final result can be obtained from the class_pdb table using the query output from step
2. Note that the class_pdb itself could be a virtual join table, joining to group_pdb and
deal_pdb.

3.2 Selected CMO Bonds Collateral Report

In this case, we are trying to get the security characteristics (e.g., bonds type, current
bond balance) of each IO and IIO bonds issued in 2003 through 2012, together with the
corresponding collateral info (e.g., prepayment speeds, %Refi, %Servicer, FICO, current
LTV).

Similar to the first case, where two queries (node and distributed) are required, except the
order of query execution, querying security data first followed by collateral data:

1. Run	a	distributed	query	on	class_pdb	for	2003	–	2012	issuance	IO	and	IIO	
bonds	to	get	the	corresponding	deal	groups.	

2. Using	the	groups	from	step	1’s	query	result,	run	a	node-based	aggrsum	
kscript	to	produce	the	group-level	statistics,	e.g.,	CPR,	%Refi,	%Servicer,	
FICO,	current	LTV,	etc.	

As a last step, the group-level statistics are merged back into class level entries to
produce the final results.

4. Summary and Discussion

With the addition of whole table on the nodes, we can perform distributed queries and
joins to link together tables representing different relations, which is functionally
equivalent to nested queries and joins in RDBMS.

When complex queries are involved, there may exist different query execution plans
leading to the same results. For instance, in test case 3.1, the possible approaches are:

1. a	node	query	on	remic_pct	table	to	obtain	the	groups	supported	by	a	given	
pool,	followed	by	a	distributed	query	on	class_pdb	to	get	the	floaters	and	IOs	

2. a	distributed	query	on	remic_pct	table	followed	by	a	node	query	on	
class_pdb.	
	

Even	though	they	return	the	same	results,	but	their	performance	characteristics	are	
different.		
	
This	leads	a	question	about	how	to	select	the	more	efficient	approach	among	the	
many.	There	is	no	easy	answer	to	this	question,	because	different	queries	may	have	
completely	different	characteristics,	demanding	a	different	approach.		A	simple	rule	
of	thumb	may	just	be	to	choose	the	first	query	to	produce	the	smallest	query	result.	
	
In	the	case	3.1,	perform	a	node	query	on	remic_pct	first	in	general	produces	smaller	
output	size.	For	case	3.2,	running	distributed	query	on	bond_pdb	(0.25M)	first	may	
be	the	right	choice,	because	1)	a	whole	bond_pdb	table	is	still	smaller	than	a	single	
node	remic_pct	table	(approx.	25M	records);	and	2)	the	group-class	is	a	1:M	relation	
vs	the	M:N	group-pool	relation.	
	
5. Variation of the Scheme

Another approach is to reverse the modes of whole vs node table by making the whole
table a real one. The node table is just a table containing the disjoint values of the
distribution key field, or an alternative table (a non-existing one, mapped through
metadata) joining to the whole physical table, using the same Table Join Index.

The advantage is the simplicity by reusing existing components of the current UB.

The drawback could be a slight performance overhead when running analysis on the
standalone node tables, i.e., regular queries without using other relations.

Furthermore, with this approach, if we make all the node-table virtual pointing to the
whole real table, it will make it easier to adjust nodes. For instance, if we want to change
a 36-nodes UB database into 100-nodes, then we only need to re-build the node virtual
tables.

UBFile Versioning

1. There	are	frequent	situations	where	a	small	portion	of	a	large	table	needs	to	
be	revised	

2. a	small	portion	of	the	table	needs	to	be	revised	while	keeping	the	original	
version	intact	

Current UB handles the above situations by
1. regenerating	the	whole	table	
2. creating	a	separate	new	table		

Which is not efficient in both time and storage consumption.

This enhancement addresses the above issues.

Field-Wise Updates
In this case, only a few fields of a table is updated.

The output() function of data() needs to be updated
1. to	allow	only	selected	fields	to	be	updated,	either	directly	replacing	the	ub1	file		
2. to	create	a	new	virtual	linked	table,	containing	only	the	updated	fields,	the	ub1	

files,	while	referencing	the	existing	table,	which	could	be	a	table	in	a	remote	
UBX	instance.	A	special	inter-UBX	instance	is	also	implemented	to	handle	node-
wise	table	reference,	as	described	below.	

Node-Wise Inter-UBX Operations: Remote Linked Tables
When an instance of UBX has identical number of nodes and containing same data
scheme, i.e., same dataset, node-wise inter-UBX operaions can be performed.

On the node, each table in the remote UB instance can directly used without join, as if the
remote table is local to this UB instance.

A special table can be a remote link table, similar Linux’s symbolic link, which points to
a remote node-wise inter-UBX table, except it may contain its own field-wise or row-
wise (see below) updates.

Row-Wise Updates
A new UBFile extension is created to handle the update and deletion of rows. This is
done by creating an index file that masks rows to be updated or deleted.

A separate component file is added to this virtual file containing the updated rows. The
table is thus a vertical file consisting of the masked file and the updated rows.

Materialize Linked Tables
When we want a permanent table without the dependency on the referenced table, we
copy and resolve the updates, and merge them into a regular table.

Use Cases
1. A	few	fields	need	to	be	updated	with	an	existing	table:	use	the	column-wise	

update	method	
2. A	few	rows	need	to	be	updated	with	an	existing	table:	use	the	row-wise	update	

method	
3. A	new	version	of	a	table	needs	to	be	created	while	keeping	the	original	table	

intact,	use	linked	table	method	

UBX WebEngine

UBX™ WebEngine is a browser-based web application that combines the power of
server-side Java 2 Enterprise Edition (J2EE) components, such as XML, JavaMail,
Servlets, and JavaServer Pages (JSP). It is a tool for user-driven data analysis and
reporting. Features include user authentication, data inspection, support for ad-hoc
queries using flexible data selection criteria and record filtering, execution of pre-defined
reports, and execution of K-script.

UBX™ Shell
The UB Shell is an application that easily interacts with the UBEngine. It is the user
programmable engine within UBX™ Platform. The UB Shell performs sorting; indexing
based upon the sort results and joins databases, while minimizing data movement. It runs
on all supported platforms. It can run in several different modes: interactive, batch,
standalone, and networked. It is implemented using the Object-Oriented technology for
flexibility, maintainability, and extendibility.

UB Sort,
The UBX™ uses patented linear sorting algorithms allowing every field to be sorted for
indexing and accessed with reduced memory pointer manipulation

UB Index,
The UBX™ uses an unique indexing mechanism allowing every field to be indexed and
accessed with reduced memory requirements and pointer manipulation

UBX™ K-Script
UB Script, or K-Script, is a full-featured scripting language supported by UBX™ to
manipulate data, perform data modeling, and implement users business rules. Resembling
the syntax of C++ and SAS programming language, it best utilizes UBX™'s underlying
functionalities and can be further extended to fit users' specific need by using UBX™'s
C++ API.

UBX™ SysGovernor
The UBX™ SysGovernor uses an industry standard (SAP, TCP/IP or CORBA)
compliant communication transport framework providing both synchronous and
asynchronous messaging to all of the massively parallel computing UB modules. It
oversees the execution of user requests, manages request tracking and controls the
operation of the computational nodes where requested tasks are performed. User
requested reports are coordinated and notification to the UB WebEngine is initiated as
reports become available.

UBX™ API
The UBX™ API enables open integration with UBX™ Platform through a set of C++ ,
Python & R object classes of mathematical physics libraries. Primary library classes
include UBX™ Manager, which provides programmatic access to internal UBX™
functions; CSymbols, which internally stores and tracks all objects within UBX™ and K-
Object, which allows users to manage the data type of objects stored in the registry.
UBX™ API allows users to develop high performance sophisticated applications for
accessing and analyzing large dataset. UBX™ Shell is an application developed using
the UBX™ API.

UBX™ Expression

UB Expression is a library containing proprietary mathematical and logical function,
which handles complex multi-layered calculations, summations, and business rules.
SumF – utilized to calculate the sum of a field(s) over multiple query results.
AggrSum – used to sum and group results on multiple specified ranges. Results are
based on a set of user defined queries, which are performed on a single file or joined
multiple files.

UBX™ Mathlib
UB Mathlib is a mathematical physics library containing advanced statistical techniques
used to build models:
Non-Linear Least Squares Regression
Maximum Likelihood Estimation
Linear & Non-Linear Logistic Regression
Quantum ElectroDynamics (QED) Field Effect
Deconvolution
Lie Group Symmetry
Differential Geometry of Manifolds
Unified field theory of Gravitation, Electromagnetics, Strong & Weak fields

UBX™ ETL
The UBX™ ETL is a data extraction, transformation, and loading (ETL) tool that loads
data from the business data sources, e.g., COBOL data sources, TAP delimited data into
the system. The UBX™ ETL tasks are distributed across nodes by the number of records
and key field values. It utilizes the data definition files that are defined in the distributed
table manager created to find, extract and convert a specified set of records from the ‘raw
data’ which may contain many other record types.

UB Inspector
The UBX™ Inspector (UBI) is a tool for managing, validating and maintaining metadata
such as COBOL copybooks and Data Definition Language (DDL) commands from
relational databases. It also provides the ability to make changes to the copybook. The
UBI unifies different metadata representations by converting them to a standard XML
representation.

UBX™ Manipulator
The UB Manipulator (UBM) is the transport engine that actually extracts, combines, and
reorganizes data to create the data sets that users have requested.
The previous section explained how the UB Inspector verifies and processes the raw
source data into “staged” or “processed” source data. Business decision-makers, using
the Metadata Repository, make data requests by selecting from the available processed
data. The Metadata Repository then records the user's selections to create and store a
global Source-to-Target Map.
The UBM reads the Source-to-Target Map to learn about the data a user wants and how
he/she wants it organized. The UBM then extracts the needed data from the processed
source data, combining data from different source data sets and reorganizing the data if
needed according to the user's request into the desired end result: a normalized, target
data set.

Embedded System, A Reconfigurable computing platform

Background
There are several types of computations and related computer functions
that take longer then desired when run on conventional Von Newman architecture
computers. One way to address this problem is with many computers running in parallel
another approach is to build hardware that can handle the computations much faster.
This invention is an example of the second approach.

The advent of Field Programmable Gate Array (FPGA) technology makes practical
reconfigurable computing hardware. This invention is a reconfigurable computing
platform with several innovative and unique design features.

Description
The Embedded System is a hardware system that plugs into a PCI slot on conventional
“open system” host computer therefore it does not need to duplicate the IO and storage
functions already available with off the shelf systems. The open system computer
Handles I/O, stores the configuration files for the embedded system, controls the loading
the of the appropriate configuration for the tasks at hand, runs the embedded system
aware OS or application, and uses the embedded system to process tasks

Unique Features
Multiple FPGA chips.
Multiple Memory arrays.
Crossbar switch connecting any FPGA to any Memory array.
Static Memory arranged is such a fashion to support a very long instruction word Harvard
architecture (separate instruction and data memories) configuration.
Wide word reconfiguration path (the entire FPGA system can be reconfigures in a
fraction of a second)
Well suited to pipeline based solutions for repetitive computational tasks.

Current Implementation Block diagram and features

64 bit 66 MHz PCI

72 bit data paths (8 bytes + ECC)
4 Xilinx Virtex 1000 Field Programmable Gate Arrays (FPGA)

Up to 12 GB SDRAM, which can be configured as 4 physical memories that can operate
independently, in parallel, or as one large memory

A 72 bit by 8 crossbar switch which connects any of the 4 physical memories to any
FPGA

Very Long Word Instruction memory -- 216 bit by 256K words of SRAM

Examples of use

Pipeline Configurations
Very Long Instruction Word
UB sort in embedded system

SDRAM

Cross
Bar

switch

SDRAM

SDRAM

SDRAM

FPGA

FPGA

FPGA

FPGA

PCI
INTERFACE

LONG WORD
INSTRUCTION

SRAM

LONG WORD
INSTRUCTION

SRAM

OPEN
SYSTEM

OPEN
SYSTEM

SDRAM

Cross
Bar

switch

SDRAM

SDRAM

SDRAM

FPGA

FPGA

FPGA

FPGA

PCI
INTERFACE

LONG WORD
INSTRUCTION

SRAM

LONG WORD
INSTRUCTION

SRAM

OPEN
SYSTEM

OPEN
SYSTEM

Pipeline Configurations

Ideal for doing the same calculation on many data elements
Performance gains greater than 100 times are practical
Performance is the same for short or long calculations
One data element is completely processed for each pipeline time step.

Pipeline Example: The Cash Flow Calculation
void OAS2Price::GetCF() {

double c0 = loan_.cash0_, c1;

double sBal;

for(int i = 1; i <= pIntRatePaths_->nTimes_; ++i) {

int WAM = pIntRatePaths_->nTimes_ - (i - 1);

sBal = c0 * (1. - pow(1. + loan_.coupon_ / 1200., 1 - WAM))

/ (1. - pow(1. + loan_.coupon_ / 1200., - WAM));

c1 = (1. - .01 * GetSMM(i)) * sBal;

pCashFlow_[i - 1] = c1 * loan_.sfee_ / 1200.;

c0 = c1;

}

}

1,641 clock ticks for each
Iteration of the for loop

§ The time quanta for the FPGA is equal to 10 clocks of a 1GHZ processor
§ For this example the embedded system is about 160 times faster then

the C++ open environment
§ The rate of completed calculations is independent of the

analysis complexity and the data size

Pipeline Example: The Cash Flow Calculation

void OAS2Price::GetCF() {
double c0 = loan_.cash0_, c1;
double sBal;
for(int i = 1; i <= pIntRatePaths_->nTimes_; ++i) {

int WAM = pIntRatePaths_->nTimes_ - (i - 1);
sBal = c0 * (1. - pow(1. + loan_.coupon_ / 1200., 1 - WAM))
/ (1. - pow(1. + loan_.coupon_ / 1200., - WAM));

c1 = (1. - .01 * GetSMM(i)) * sBal;
pCashFlow_[i - 1] = c1 * loan_.sfee_ / 1200.;
c0 = c1;
}

}

a = loan_.coupon_ / 1200
b = 1 + a
c = 1 – WAM
d = bc

e = 1 – d
f = 1+ a
g = -WAM
h = fg

k = 1 – h
m = e / k
sBal = c0 * m

C++ sBAL calculation
as quanta

Each quanta is implemented in FPGA reconfigurable resources

void OAS2Price::GetCF() {
double c0 = loan_.cash0_, c1;
double sBal;
for(int i = 1; i <= pIntRatePaths_->nTimes_; ++i) {

int WAM = pIntRatePaths_->nTimes_ - (i - 1);
sBal = c0 * (1. - pow(1. + loan_.coupon_ / 1200., 1 - WAM))
/ (1. - pow(1. + loan_.coupon_ / 1200., - WAM));

c1 = (1. - .01 * GetSMM(i)) * sBal;
pCashFlow_[i - 1] = c1 * loan_.sfee_ / 1200.;
c0 = c1;
}

}

a = loan_.coupon_ / 1200
b = 1 + a
c = 1 – WAM
d = bc

e = 1 – d
f = 1+ a
g = -WAM
h = fg

k = 1 – h
m = e / k
sBal = c0 * m

C++ sBAL calculation
as quanta

Each quanta is implemented in FPGA reconfigurable resources

f

b
c

g
h

d

k

e
m sBALaLoan_Coupon

WAM

c0

WAM

f

b
c

g
h

d

k

e
m sBALaLoan_Coupon

WAM

c0

f

b
c

g
h

d

k

e
m sBALaLoan_Coupon

WAM

c0

WAM

Pipeline Example: The Cash Flow Calculation

WAM

f

b
c

g h

d

k

e
m sBALaLoan_Coupon

WAM

WAM

c0CLOCK TICK 1

f

b
c

g h

d

k

e
m sBALaLoan_Coupon

WAM

WAM

c0CLOCK TICK 1

f

b
c

g h

d

k

e
m sBALaLoan_Coupon

WAM

WAM

c0CLOCK TICK 2

f

b
c

g h

d

k

e
m sBALaLoan_Coupon

WAM

WAM

c0CLOCK TICK 2

CLOCK TICK 3

f

b
c

g h

d

k

e
m sBALaLoan_Coupon

WAM

c0CLOCK TICK 3

f

b
c

g h

d

k

e
m sBALaLoan_Coupon

WAM

c0

f

b
c

g h

d

k

e
m sBALaLoan_Coupon

WAM

c0

At each time tick the data moves to the next calculation
A data calculation is completed for each time tick

Very Long Instruction Word

Instruction memory is separate from Data memory.
The instruction set memory word is up to 216 bits long, this allows a very rich instruction
set.
The system is completely reconfigurable for any instruction set, data path size, function
set, constrained only by the amount of FPGA available.
Multiple functions in one instruction cycle.
Full stored program functionality.

Example: Very Long Instruction Word for custom processor

Dual
Port

Register
set

MPL

PCImmy

Very Long Instruction Word Set

mmy mmy mmy

sequencer

Example: Very Long Instruction Word for custom processor

Dual
Port

Register
set

MPL

PCImmy

Very Long Instruction Word Set

mmy mmy mmy

sequencer

UB sort in embedded system

Several memory access take place at the same time
All the sort bookkeeping takes place at the same time as the access to the data to be
sorted
Linear sort time for number of records and key length
Sort time = Number of records x field length x MMY access time
100,000,000 records x 4 character field = 17 seconds
30 X faster then sort in conventional server (Quad 700 Mhz ZEON)
 Quick sort = 523 seconds
 Stable sort = 601 seconds
 Embedded UB sort = 17 seconds

MMY

MMY
MMY
MMY

Data to sort

N Sort order list

N-1 Sort order list

Internal
tables

FPGA
MMY

MMY
MMY
MMY

Data to sort

N Sort order list

N-1 Sort order list

Internal
tables

FPGA

 CLAIMS

Efficient parallel computing
 UBX™ uses a system of software to manage parallel computing in an efficient and
concurrent fashion by synchronizes among all nodes, combines the intermediate results,
and handles user tasks.

Unifies Information Across Heterogeneous Databases
UBX™ provides a single view of data from multiple data sources.
These sources include legacy systems, Oracle, and DB2.

Large Datasets Are Processed in Reduced Time
As the size of the big data grows, UBX™ maintains linear scalability.

High Speed Computational Engine
UBX™ is able to process queries ten times faster than a conventional database. This is
the result of UBX™’s unique indexing algorithm that indexes all fields and requires only
one scan of the dataset to process complex computations and sorts. Most conventional
databases are hierarchal and require sequential scans of the database slowing down the
processing and delivery of the results to the client.

High Data Integrity
UBX™ extracts, transforms, and loads (ETL) data from external databases. UBLoad is
able to verify the format of data loaded from external sources. It recognizes format
changes and updates instantly. This allows the user to verify and correct the format
before the data is processed. Therefore the client consistently receives accurate reporting
and analysis.

Web-based GUI Providing Fast Access to Analytic Knowledge
UBX™ interface allows the client to request pre-defined or ad-hoc analysis and
reporting. The results can be presented in a standard report format and/or through charts
and graphs. The thin layer architecture between the client, UBX interface and the
processing engine streamlines processing time and overhead. Results are presented to the
client in a minimal amount of time, generally minutes and seconds.

Embedded System A Reconfigurable computing platform
Multiple FPGA chips.
Multiple Memory arrays.
Crossbar switch connecting any FPGA to any Memory array.
Static Memory arranged is such a fashion to support a very long instruction word Harvard
architecture (separate instruction and data memories) configuration.
Wide word reconfiguration path (the entire FPGA system can be reconfigures in a
fraction of a second)
Well suited to pipeline based solutions for repetitive computational tasks.

ABSTRACT

The UBX™ is a matrix computing architecture to perform data- or computation-intensive
applications in scientific, engineering, financial, and other various industrial fields in
parallel across multiple computers, i.e., computational nodes. Essential to the claim in
this patent application is the way UBX™ synchronizes among all nodes, combines the
intermediate results, and handles user tasks in a concurrent fashion.

